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Concepts for stereo vision are examined and both optical and digital
implementations are discussed. The requirements of a pattern recognition
system with tolerance to shift, scale and aspect angle are examined. The
Neocognitron architecture of Fukushima is discussed, and a scaling law is
derived for the Neocognitron.

A retinal model- with adaptive contrast and adaptive spatial resolution is
presented. This retinal model, called IRIS, has properties which would be
helpful in the front-end of a machine vision system. The proposed retinal
model adjusts the set point of dynamic range to provide maximum contract
about the average scene intensity. It also adapts its spatiotemporal
resolution to the local scene intensity, provising more averaging at low
intensity, thereby combating photon noise.Ii
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1.0 INTRODUCTION

.2~--

The mission of -SD-I is to develop defenses against threatening

ballistic missiles. There are four distinct phases to the SDI

U defense; boost, post boost, midcourse and terminal, -s-showh in

Figure-1 In each of these phases, one or more machine vision

functions are required, such as pattern recognition, stereo

image fusion, clutter rejection and discrimination., - "

1.1 Adaptive Machine Vision for Boost Phase

" ,' Consider the Acquisition, Tracking, Pointing and Fire Control

(ATP-FC) function during boost phase. The hot rocket plume

provides a bright signature in the mid and long wave infrared.

However, the centroid of the thermal plume image lies anywhere

from 50 to 300 meters behind the booster, and this distance is

as much as lOx the length of the missile body. The stressing

problem is not plume detection, but accurate tracking of the

actual missile, given that the size and shape of the plume

* evolves constantly during ascent, and changes abruptly between

stages. Figure 2 provides a guide to these variations in the

plume dimensions. The plume size and shape is changing

* dynamically, and these changes result in large variations in the

: *§' offset from the thermal image centroid of the plume to the hard

body. Even if the changes in plume shape with aspect angle

* could be neglected, these dynamic and sometimes abrupt changes
V

in signpt,ire pose a difficult, unsolved problem of ATP-FC, one

. -1-
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Figure 1. The SDI layered defense concept provides four defensive zones,

SDI functions requiring adaptive machine vision support acquisition, track,
~aimpoint selection and kill assessment; during post boost, discrimination and

track; During the midcourse and terminal phases, acquisition, tracking,
• discrimination and kill assessment.
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-- Figure 2. The hot missile plume provides a good strong signature for
detection. However, the thermal plume centroid is located from 50 to 300
meters from the missile body. Plume to hardbody handover is a critical

'~&. -~problem which cannot be solved by simple centroid tracking or rigid
*template correlation tracking. An adaptive approach is required.
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that requires an adaptive pattern recognition capability.

The fusion of imagery from separate space surveillance

platforms, as depicted in Figure 3 is another challenging area

of adaptive machine vision for SDI. It is known from studies of

mono vs. stereo tracking that stereo tracking with two passive

angles-only sensors can provide much smaller error ellipsoids

for the target position than is possible with a single sensor of

comparable size performing monostatic angles-only tracking.

The fine-track function is performed quite well by a Kalman

filter, once coarse stereo tracking has been achieved. This

involves associating the target images from the separate stereo

0sensors, as well as estimating the offsets from the plume to the

)hard body. The key steps of this preliminary coarse stereo

track function is frame-to-frame association at the individual

P sensor level, and stereo fusion of the images from the separate

sensors. These functions are performed naturally by biological

visual systems, inspiring our efforts to draw upon theories of

stereopsis in humans to develop a comparable capability in

. "machine vision.

I.

* 1.2 Adaptive Machine Vision for Post Boost Phase

In the post boost phase, the bus containing the threat weapons

(re-entry vehicles or RVs) makes a serie5 of thrusted

* , accelerations to independently launch each RV towards a

* -4-
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, association problem grows in complixity as N2 for stereo tracking, where
" N is the number of targets. For m sensors and N targets, the computational

., ... complexity grows as Nm .  Parallel processing, similar to that performed by
" biological stereo visual systems may be required to need the SDI requirements.
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designated impact site. After each divert of the bus, an Rld is

N oriented for re-entry into the atmosphere, spun up for stability

and deployed from the bus. To confuse and overwhelm the SDI

defenses, 'penetration aids" such as balloons, radar chaff, and

p thrusted replica decoys are deployed along with the threat RVs.

An adaptive machine vision capability can provide the critical

discrimination between the threat objects and the decoys which

proliferate during the post boost phase.

The basis for this discrimination will be measurements gathered

by passive electro-optj: imaging sensors, passive IR photometric

sensors, active laser radars, and other exotic systems. Passive
A
* IR imaging will not be feasible at large standoff distances, on

U the order of 10,000 km. However, sub-orbital trajectories which

originate in the USSR and terminate in the continental U S. are

invariably sunlit over that portion of the trajectory which

traverses the North Pole. Passive imaging at iigh resolution in

the short wavelength ultraviolet light from the sun is therefore

possible. For example, at a standoff distance of d = 10,000 km

(1.57 earth radii) and a wavelength of lambda = 0.2 micrometer,"%6
a passive interferometric imaging system with an aperture %

separation of D 20 meters (the collection apertures can be N

smaller) will provide a spatial resolution, on the target, of

* approximately (lambda/D)(d) = 10 cm. This resolution is

adequate to determine object size and shape and to estimate the

object orientation; in combination with passive multiband

infrared photometry, the emissivity-temperature product of the

-6-



object may be estimated to provide a discriminant between

objects of high and low thermal mass (waiheads versus decoys).

-Additional discriminants are needed to reduce the probability of

misclassification between decoys and warheads. Recent work by

Sejnowski at Johns Hopkins University has demonstrated the

capability of a neural network to estimate 3-D shape from

shading given passive imagery. Wh't needs to be shown next is

the capability of a neural network to use this 3-D shape

information for enhanced discrimination between between warheads

.' and decoys.

0

1.3 Adaptive Machine Vision for Midcourse Defense

The midcourse phase sensors will consist of pop-up sensors,

derived from the probe experiment, and airborne sensors evolving

from the Airborne Optical Adjunct (AOA) Experiment. The

, . Pfunctions of these sensors include ATP, discrimination and kill

assessment. Since the pop-up and airborne sensors are launched

s ." or operate over the region in the United States targeted by the

0 Soviet missiles, a serious threat of "sensor blinding" exists as

A., "the result of fireballs in the sensor field of view. Even in

the absence of nuclear detonations, extensive angular regions

* around the sun would be blotted out on a conventional detector

array. In the event of SLBM attacks off our eastern or western

coastlines, the morning and afternoon sun would play havoc with

0 the ATP, discrimination and kill assessment functions. Simple

shuttering is inadequate, because the blinding image of the sun

7
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or of a fireball is concentrated over a limited region of the

(4 sensor field of view. What is needed is a dynamic capability to

adapt to extreme variations of scene brightness, similar to the

ability exhibited by the human retina. We have studied this

retinal adaptation, and developed a model retina which adapts on

a point-by-point basis to the scene intensity, to maintain

limited visual function in the presence of dynamic blinding

flashes as from a nuclear detonation.

A less extreme, but equally serious problem for an airborne

sensor is the disturbed atmosphere remaining for several minutes

after a nuclear detonation. Figure 4 shows the evolution of hot

*plasma from a one-megaton range burst occurring at a 200 km

* altitude, according to an unclassified Defense Nuclear Agency

primer on hign altitude nuclear events. At top left, the burst

is shown at a early phase. At the right, after 60 seconds, the

hot plasma has risen to 800 km and is highly structured. On the

bottom left, after 3 minutes, the plasma continues to evolve in

linear striations along the earth magnetic field, to form a

severely cluttered visible and IR background for the ATP

discrimination and kill assessment functions. On the bottom

left of Figure 4, these striations are shown after one full

hour. The striations have spread out several earth radii. 0

During nuclear war, the long lasting contributions of precursor
high altitude nuclear detonations will clearly result in an

extensive disturbed and cluttered background for all types of

SDI sensors... airborne, pop-up and space-based. To deal with

) -8-
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this threat, the pattern recognition and tracking functions of

these sensors must be capable of adaptive gain control (as in

the model retina we have proposed) as well as powerful, clutter

rejecting pattern recognition. Fusion of measurements from

multiple wavebands and platforms can provide additional

robustness for this function.

1.4 Adaptive Machine Vision for Terminal Defense

A radar system (the Terminal Imaging Radar, TIR) is planned for

the discrimination and tracking of objects leaking through to

the terminal defense zone. Here the pattern classification and

parallel processing capability of neural network systems to

discriminate between lethal and non-lethal radar signatures (see

Figure 5) is extremely promising, because the terminal defense

V is stressed by the large number of targets, the finite number of

interceptors, and the few precious seconds remaining to commit

an interceptor against a threat vehicle.

, .0

• i0
9.



s~c. ASPeCt (dog)
Specular - 180

120

- Cone Side
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Usso

Figure 5. Simulated radar signature of an RV for aspect angles from
00 to 1800. These Doppler radar signatures may be input to a neural
net for pattern classification or for fusion with EQ or IR signatures
to provide more robust discrimination against decoys.
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2.0 Application of Machine Vision to Stereo Tracking

Stereo tracking of SDI targets is attractive because it provides

substantially better accuracy than tracking with a single

sensor. However, the individual detected targets from the two

sensors must be correctly associated before stereo tracking can

begin. Since this target association problem grows as N when

there are N targets, the computational requirements are

"- significant. Yet this same basic function is accomplished by

compact, low power biological systems.

David Marr proposed two different stereo vision algorithms. We

have studied these algorithms, but prefer an approach suggested

Uby Eric Schwartz of NYU. To understand Schwartz's suggestion,

it is first necessary to understand how the images captured by

the right and left eyes are merged in the human visual cortex.

U. The input from each eye is brought together in registration in

the visual cortex, and organized into "ocular-dominance columns"

as shown in Figure 6. The gross structure of visual cortex is a

map of the entire visual field, while the microstructure

contains interleaved inputs from the right and left eyes.

* What advantage does this particular representation offer?

.> Schwartz by hypothesizes that this representation (formatting)

of the raw data permits the extraction of depth information by

means of a cepstrum-like computation.

* -12-



ANATOMICAL CONFIRMATION of ocular-dominance columns came fronm various stain.
ing methods and from axonal-transport autoradiographs such as those shown In color on
page 41. This composite autoradiograph' visualizing the pattern over an are& some 10 ml.
limeterm wide was made by cutting out and pasting together the regions representing layer
I%' in a number of parallel sections; the one in bottom illustration on page 41 and others at
different depths.
Taken from "Brain Mechanisms of Vision," by
D. H. Hubel and T. N. Wiesel, in The Mind's Eye,
edited by Jeremy M. Wolfe

.

R = right
L = left L R L R L R L R L R L R L R L R L R L

Idealized ocular-dominance columns

Figure 6. Top, ocular-dominance columns revealed
in the visual cortex of a monkey by radioactive

~'. ~staining. Bottom, idealized ocular-dominance
* columns to be used in the cepstral stereo-tracking

experiments.

* -13-



His argument goes as follows: The pattern of excitation in the

left ocular dominance column is a duplicate of that in the right

column, except that close up objects are mapped to slightly

- offset columns compared with objects that are further away, as

I. shown in Figure 7. Think of these interleaved images as an

original plus its echo, where the echo offset depends upon

depth.

Mathematically, the pattern represented in visual cortex may be

approximated as:

ir + i i(x-kd, y) + i(x+kd, y) =

i(x, y)*{a(x-kd, y) + 6(x+kd, y)}

where i(x, y) is the basic image that is seen at different

parallaxes by the left and right eye, ir is the image captured

by the right eye, and i is the image captured by the left eye.

The amount of parallax depends upon the object depth d, and a

scaling factor k which depends upon the lateral separation

between the eyes.

To extract the depth, it is necessary to find the convolution

function

~ ~;' ~ [6(x-kd, y) + 6(x+kd, y)].

Since this convolution function is unknown, a method of blind

* deconvolution is required; the cepstrum is such a method.

• -14-
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•i* ..

' 

,

N I

Figure 7. The depth of objects in the scene is coded in
N .> the ocular dominance representation by the offset between
.the corresponding image slices in the left and right ocular

* dominance columns. Here objects are shown at three different
-' depths.
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It is convenient to discuss the cepstrum for the general case of

blind deconvolution of the function

h(x) = u(x) * v(u).

By the Fourier convolution theorem, in Fourier space we have

XH(f) = U(f)V(f),

where the upper case denotes the Fourier transform 'as been

applied to the original functions. This multiplicative form for

H(f) can be reduced to a sum by taking logarithms:

log(H(f)) = log (U(f)) + log(V(f)).

If the structure of U(f) is smooth and the structure of V(f) is

rougher or more fine-grained, then a further Fourier

transformation will separate them into distinct regions. In

order words, the support of F(log(U(f)) will not overlap with

k the support of F(log(V(f)). Here "F" denotes the Fourier

% transform operator. This completes Schwartz's theory for how
%

the visual system may isolate the convolution function

v(x,y) = [6(x-kd, y) + 6(x + kd, y)].

% Under critical examination, the cepstrum has some difficulties,

since both U(f) and V(f) must be positive valued if negative

infinities and complex valued quantities are to be avoided. Of

course, there is the possibility that a usable final result may

0 be produced using log-like functions which remain finite valued

i .for zero arguments. However, a modification of the procedure

* -16-



discussed above will eliminate the occurrence of complex valued

logarithms, if they really do pose a problem.

As before, use the convolution theorem to obtain

H(U) = U(f)

At this point, we take the absolute square value of H(f) before

going on, so that we have

- 2  logJU(f)J 2 + logjV(f) 2

which avoids complex values. If we approximate the true log

function with a finite valued function that saturates for very
"p

small and very large arguments, we expect that the basic

properties of the log function required by the cepstrum

technique will be retained, at least approximately.

After taking logarithms, instead of obtaining:

log(2cos(kdf)),

xxO"(where f xis the Fourier space variable conjugate to x) we now

obtain

log(4cos2 (kdfx ) )
I'

In either case, an additional Fourier transform will produce

-. peaks whose location provides a measure of the depth d.

0 -17-
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2.1 Optical Implementation

An all parallel optical implementation of the cepstral stereo

fusion algorithm will require optically addressed spatial light

modulators for the input, coherent optics to perform the Fourier

transforms, and a logarithmic response spatial light modulator

to implement the cepstrum. At the present time, spatial light

modulators with a logarithmic response are not available.

However, there are two ways out of this dilemma. One way is to

use a thresholding spatial light modulator so that the

Goodman-Kato halftone screen technique can be asked to produce a

logarithmic response.

h Spatial light modulators which are capable of thresholding

include the variable grating mode liquid crystal device (Sawchuk

and Tanguay) and a photocathode addressed lithium niobate device

(Warde). See Figure 8 which shows the halftone screen technique

is capable of providing a logarithmic response over two decades

of input light level.

The alternative approach is to use an array of logarithmic

amplifiers, each one coupled to a photoreceptor, as Carver Mead

has done. His results, which are nearly logarithmic over a four

. decade range of input intensity, are shown also in Figure 8. It

should be possible to couple such a photoreceptor array onto a

liquid crystal modulator, but at the present time, such a

logarithmic spatial light modulator is unavailable. If our

4 -18-
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Measured response of logarithmic photodetector.
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is logarithmic over more than four orders of magnitude in in-
tensity.

Carver Mead, CMOS logarithmic detector response
Neural Networks, 1 p 82 (1988).

Figure 8. Logarithmic conversion results. Top, halftone screen approach,
Bottom, CMOS photodetector approach.
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demonstration using more readily available devices is

encouraging, future tasks can emphasize an all parallel

implementation.

The planned demonstration will use a CCD TV camera to input

merged left and right views of a test scene into a liquid

V: crystal TV display (Radio Shack) for coherent optical Fourier

transformation. This transformed pattern is imaged onto a

A Goodman-Kato half-tone screen, and detected by a second TV

camera, operated in a thresholding mode, by electronic clipping

* of the output video signal. The resultant signal is then

applied to a second liquid crystal TV, and optically Fourier

transformed. Discrete peaks in this output image correspond to

P the 3-D depth planes in the test scene.

The first task in our stereo tracking demonstration is to

I validate the concept through a digital simulation. This will

provide insight into the sensitivity of the cepstral stereo

algorithm to the accuracy of the logarithm function.

Figure 9 shows the laboratory set-up which provides merged and

interleaved images from "right" and "left" vantage points. Only

one ronchi ruling used, so misalignment prcblems between a pair

. .' of ronchis are eliminated. Experiments with different amounts

of parallax are permitted, since the baseline between the right

and left objective lenses can be varied. Finally, only a single

TV camera is required to capture the input scene, so problems

* -20-



with differential distortion between two ca,;eras are eliminated.

Figure 10 shows the schematic for the cepstral processing.

to's Coherent optics is used to perform Fourier transformation, and

the logarithm is introduced through the Goodman-Kato half-tone

screen, followed by clipping of the video signal in the

subsequent step of image detection with a CCD TV camera.

..

. 0 o

-- 21-
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idealized ocular-dominance columns

[TV camera

Goodman-Kato hal ftone screen

SlaserTV camera

beam

LCTV

K nonl inear
> ,. clipping of
,". !video signal

I-

laser -f discrete peaks reveal
beam object depths in scene

LCTV

Figure 10. Block diagram of planned laboratory test
of cepstral stereo tracking.
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2.2 Digital Implementation of Stereo Algorithms

The cepstral stereo algorithm is attractive from the standpoint

of optical or digital implementations. The optical

implementation is uniquely capable of exploiting the

computational map style of processing that is used in the

interleaved input format of the cepstral algorithm. From the

digital standpoint, the cepstral algorithm offers a smaller

operation count than the best-known rival algorithm (the

zero-crossing algorithm of David Marr and Tomaso Poggio, in "A

0computational theory of human stereo vision," Proc. Royal Soc.

Lond. B204, pp 301-328).

In the sections that follow, we demonstrate this advantage by

carefully counting the computer operations needed to carry out

both algorithms. Since the speed of multiplication, addition,

table look-up and algebraic sign comparison is machine

do - .t, such a comparison is generally made for a specific

rMal ne and the results may be different for other computers.

In the present case, the dominant computation in both algorithms

is an FFT, and so the algorithm ranking should be machine

independent. With this in mind, we justify the comparison in

* Table 2.4 which counts all of the computer operations (multiply,
A .

add, look-up, sign compare) equally.

-24-
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2.2.1 Computational Load of the Zero-Crossing Stereo Algorithm

Two distinct strategies are used by the zero-crossing algorithm.

- One strategy is to work with an edge-enhanced version of the

stereo pair imagery. The Laplacian filter is used to perform

this edge-enhancement, since this filter is not preferential to

any particular orientation. The zero-crossings in the Laplacian

filtered imagery are then correlated between the left and right

stereo pairs. This brings us to the other strategy, which is to

*solve the zero-crossing association problem in stages: first at

0 low resolution, then at double the resolution, then quadruple

9\.' ~ \ the resolution, and so on, up to the highest available

resolution. This recursive strategy uses the low resolution

depth information to guide the association of more detailed

zero-crossings revealed at the next higher level of resolution.

For the remainder of this discussion, we fix the size of stereo

pair images as N by N, where N = 2 Though not a requirement

of the algorithm, it is helpful in analyzing the computational

0 load, since the recursive processing uses image resolutions

which change by a factor of 2 between stages. To prepare the

.. blurred imagery needed for a given stage, we merely need to

* replace every 2 by 2 square of pixels in the previous image with

<' .' a single pixel. This involves summing up the 4 pixel values at

each of the new sample locations. The original N by N image

goes over to an N/2 by N/2 image, and the computation count is:
(3 additions per pixel)(N 2 /4 pixels) =(3/4)N additions.
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See Table 2.1 where this result is tabulated. The blurring is

repeated in stages to produce stereo pair images sized N/4 by

N/4, N/8 by N/8, etc. At each successive stage, the number of

pixels decreases a factor of 4, so the computation count over

all stages of blurring forms a geometric series:

(3/4)N 2 [1+ 1/4 + 1/16 +...] additions.

The infinite geometric series sums to 4/3, and since the series

is rapidly convergent, the truncated sum may be approximated by

N 4/3.

So the computation count for blurring totals 2N2 additions. The

factor of 2 comes from the left and right stereo pairs. See

Table 2.1.

SIn the next step of the zero-crossing algorithm, the Laplacian

filter is applied to the blurred images and the resultant

zero-crossings are located. The Laplacian filter combines each

pixel with the weighted sum of its 4 nearest neighbors. There

are 4 additions and 1 multiplication for each filtered value.

Hence, to filter an N by N image requires:
2 2

4N2 additions + N multiplications.

See Table 2.1 where this result is tabulated. Once again, a

factor of 4/3 is applied to include the filtering for all

*resolution scales, and a factor of 2 for both left and right
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Table 2.1 COMPUTATION COUNT FOR
ZERO-CROSSING ALGORITHM

KEY: ADDITIONS .................. [+1 A FACTOR OF 2..............x2

MULTIPLICATIONS ............ [*] A FACTOR OF 4/3 ............ x4/3

SIGN CHECKS ................ [sgn] A FACTOR OF (N/m)*(N/m) .... x(N/m)-2

N*N ........................ N^2 BASE 2 LOGARITHM ........... log

COMPUTATION COUNTS: SUBTOTALS:

OVER OVER OVER BOTH ADDS MULTIPLIES SIGN

mxm OR (N/m)^2 ALL STEREO (+1 [*3 CHECKS

-. MxM NEIGHBOR- SCALES PAIRS [sgn)
ARRAY HOODS

FORMING
BLURRED
IMAGES 3/4 N-2[+] n/a x4/3 x2 2N^2

LAPLACIAN
FILTERING 4N^2[+ ]  32/3N-2

- n/a x4/3 x2
N^2(*] 8/3N-2

ZERO-CROSSING
LOCATION 2N(N-1)[sgn) n/a x4/3 x2 (16/3)N(N-1)

CROSS-CnRRFLATION

DIRECT; m^2(m-1)[+] 4/3N-2(m-l)x(N/m)Y2 x4/3 xl

mR 3[* 4/3N-2(m)

-OR -

IN FOURIER-
SPACE:

0 FORWARD FFT 3m-2log(2m)(+ ]  8N^21og(2m)

2m^21og(2m)[* ] x(N/m)-2 x4/3 x2 16/3N^21og(2m)

V . PRODUCT OF
" TRANSFORMS 4m^ 2[+] 16/3N 2

x(N/m)^2 x4/3 xl
8m^2[*] 32/3N-2

INVERSE FFT 6m-2log(2m)[+] 8N-2log(2m)
x(N/m4o2 x4/3 X1

4m-'2log(2ni)[*] 16/3N-2log( 2m)
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stereo pairs, so the computation count for Laplacian filtering

totals:

(32/3)N 2 additions + (8/3)N 2 multiplications.

IThe search for zero-crossings involves a sign comparison between

each pixel and its nearest neighbors. In an N by N array there

are 2N(N-1) places for the pixels to change from positive to

negative or vice-versa. Including the factor of 4/3 for all

resolution scales, and the factor of 2 for both left and right

stereo pairs, the computation count for locating zero-crossings

totals:

(16/3)N(N-1) sign comparisons.

See Table 2.1 where this result is tabulated.

1 The final step of the zero-crossing algorithm is the association

of zero-crossings between the left and right stereo pairs. The

, - associations are made on the basis of peaks in the cross

correlation between small neighborhoods taken from the left and

right stereo pairs. The cross-correlation may be made directly,

' .V or they may be carried out via Fourier space, using the

* convolution theorem. The computation count results are
?. d', different, depending upon the correlation method. Despite the

well-known computational efficiency of the Fast Fourier

• Transform (FFT) for large transforms, direct cross-correlation

computation may actually be more efficient if the correlations

40
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are made over small neighborhoods. Take the neighborhood size

as m by m. The cross-correlation is carried out only along the

axis separating the stereo pairs, and is performed for lags of +

'- m/2. Direct correlation requires m multiplications and m-i adds

for each of the m lags, or m 3 multiplications and m2 (m-i)

additions for each m by m neighborhood. An N by N image

contains (N/m)2 such neighborhoods, and the cross correlation

over all resolution scales increases the ope:_ation count by a

factor of 4/3. The total operation count for each

p ~cross-correlation tabulated in Table 2.1 is therefore:

(4/3)N 2m multiplications + (4/3)N 2(m-i) additions.

The alternative correlation approach uses the FFT to Fourier

transform corresponding neighborhood for each stereo pair, and

then inverse transforms the product of these transforms to

obtain the cross-correlation. Since the cross-correlation is

Sperformed along only one axis, a I-D transform along the axis

separating the stereo pairs is required for each strip of

pixels.

The cross-correlation between strips from each stereo pair is to

be carried out over lags of + m/2 pixels. One of the strips

must be 2m pixel long, the other m pixels long. The m pixel

strip must be augmented with m additional zero valued samples

(zero padding) to keep both the transforms the same length, 2m.

2.-
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An FFT of length K requires K/2 log 2 (K) complex multiplications

and K iog 2 (K) complex additions. However, our input data is

real-valued, and the FFT algorithm also computes the transform

for the (all zero) imaginary part of the input. For real-valued

inputs, it is possible to reduce the computations in half. The

FFT of real-valued data of length 2m samples then requires:

3mlog2 (2m) additions and 2mlog2 (2m) multiplications.

Each m by m neighborhood requires m such transforms, and there

are (N/m)2 neighborhoods in an N by N image. The total

operation count for the forward Fourier transforms including the

2 stereo pairs and all resolution scales is:

8N2log 2 (2m) additions and (16/3)N2log2 (2m) multiplications.

The next step is the multiplication of the transformed data from

the left and right stereo pairs. With the zero padding, the

length of each transformed strip is 2m, and each neighborhood

contains m such steps, so there are 2m2 multiplications for each

' m by m neighborhood. Counting all of the (N/m) neighborhoods

in each N by N image, and including a factor of 4/3 for all of

the resolution scales, the total operation count listed in Table

2.1 for multiplying in Fourier space comes to:

(8/3)N 2 complex multiplications, or

(16/3)N 2 additions and (32/3)N 2 multiplications.

The final inverse transform step is full-complex and has twice

0 -30-



the operation count as the individual forward transforms (but

there no longer are 2 stereo pairs) so Table 2.1 includes

inverse transform operations totalling:

8N2 log 2 (2m) additions and (16/3)N
2 log2 (2m) multiplications.

Table 2.2 uses a spread-sheet format to compare the operation

count for direct cross-correlation with that for correlation via

Fourier space. Direct cross-correlation is most efficient for

m<64. However, for high resolution in depth, larger values of m

will be needed.

2.2.2 Computational Load of the Cepstral Stereo Algorithm

The operations of the cepstral stereo algorithm are applied over

(N/i) neighborhoods each of size 2m by m. Zero-padding by 2m

zeros along the axis oriented from one stereo pair to the other

brings the Fast Fourier Transform (FFT) length up to 4m. The

operation count for each (all-real) transform of length 4m is:

%6m log2 (4m) additions and 4m log2 (4m) multiplications.

For each 2m by m neighborhood, there are m of these transforms,

* and there are (N/m)2 neighborhoods so the total operation count

for the first set of transforms is:

6N2 log2 (4m) additions and 4N2 1og multiplications.

The next step is to form the absolute value squared of each

-31-
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transform value. This involves 4m2 additions and 8m2

multiplications over each neighborhood, and over the (N/m)2

neighborhoods totals:

4N2 additions and 8N2 multiplications.

Taking the logarithm of each value requires a table look-up and

an interpolation. The input value must first be converted

*through some bit-level manipulations into a table address and a

residual value, x, for the interpolation function. The log

" . function is convex, and so quadratic interpolation should be

*i effective. Evaluation of a quadratic in x requires 2 additions

and 2 multiplications when expressed in the form:

Ix(Ax+B)+C.

The quantities A, B and C are obtained from the look-up table.

[. Each neighborhood contains 4m2 values to be converted into

logarithms, and over (N/m)2 neighborhoods the total operation

.~ count comes to:

8N 2 additions, 8N 2 multiplications, and 4N 2 table look-ups.
'p

The final step in the cepstral stereo algorithm is an inverse

* Fourier transformation. The operation count is the same as for

i ,the initial set of forward transform,

242"6N 2log 2 (4m) additions and 4N 
2 log2 (4m) multiplications.

These results are listed in Table 2.3.
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Table 2.3 COMPUTATIONAL COUNT FOR THE
CEPSTRAL STEREO ALGORITHM

KEY: ADDITIONS ................. (+3 A FACTOR OF 2 .............. x2
MULTIPLICATIONS ........... [*] A FACTOR OF (N/m)*(N/m) .... x(n/m)^2
TABLE LOOK-UPS ............ [tlu] BASE 2 LOGARITHM ........... log
N*N ....................... N^2

COMPUTATION COUNTS: SUBTOTALS:

OVER OVER OVER ADDS MULTIPLIES TABLE
SINGLE NEIGHBORHOOD (N/m)^2 (+] [*] LOOK-UPS
STRIP (m STRIPS) NEIGHBORHOODS [tluJ

(2mi pixels +
2m zero-pad)

FORWARD
FFT 6mlog(4m)[+] 6N^2log(4m)xm x(N/m)^2

4mlog(4m)[*] 4N^21og(4m)

ABSOLUTE
VALUE

SQUARED 4m[+] 4N^2-- xm x(N/) 2
8m[*] 8N^2

BASE 2 LOG

EVALUATION 8m[+] 8N-2

I8m[*] xm x(N/m)-2 8-

4m[tlu) 4N-2

INVERSE
FFT 6mlog(4m)[+] 6N-2log(4m)

4mlog(4m)[*] 4N^21og(4m)

I
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2.3 Stereo Algorithm Comparison

Table 2.4 compares the computational efficiency of the cepstral

and the zero-crossing stereo algorithms. The number of

P. operations per image pixel depends upon the size of the

neighborhoods which are processed to extract depth information.

Precise depth measurements will require large neighborhood

sizes. The Table shows that the zero-crossing algorithm is most

% efficient for neighborhood sizes of 64x64 or smaller. For

larger neighborhoods, the cepstral algorithm is more efficient,

* because its computational count grows as 201og 2 (m) versus

.' (80/3)log 2 (m) for the zero-crossing algorithm.

I.'

0
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Table 2.4 Computational Efficiency: Cepstral vs Zero-Crossing

pS

CEPSTRAL ZERO-CROSSING

NEIGHBORHOOD BASE 2 LOG OF m TOTAL TOTAL
SIZE m OPERATIONS OPERATIONS

PER PIXEL PER PIXEL

8.00 3.00 132.00 40.67
16.00 4.00 152.00 62.00
32.00 5.00 172.00 104.67
64.00 6.00 192.00 190.00

128.00 7.00 212.00 250.00
256.00 8.00 232.00 276.r7
512.00 9.00 252.00 303.33

1024.00 10.00 272.00 330.00
2048.00 11.00 292.00 356.67
4096.00 12.00 312.00 383.33
8192.00 13.00 332.00 410.0016384.00 14.00 352.00 436.67

, -36-
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3.0 Neocognitron Evaluation

- The Neocognitron is an adaptive neural network for pattern
N recognition developed by Kunihiko Fukushima and his colleagues.
V

(See K. Fukushima, "Neocognitron: A Self-organizing Neural

Network Model for a Mechanism of Pattern Recognition Unaffected

i by Shift in Position, Biol. Cybernetics, Vol. 36 pp 193-202,

1980). The Neocognitron has a pattern recognition capability

that is tolerant to scale changes, distortion and pattern

registration (shift). Training of the Neocognitron is

accomplished by an unsupervised learning procedure. It is not

necessary to instruct the network; instead, a competitive

learning algorithm creates new exemplars as novel patterns are

introduced during the learning phase. Although a teacher is not

utilized to correct the network errors, careful pattern

selection and repetitive pattern presentation is essential to

L successful learning. In this sense, the "invisible hand" of the

teacher is part of the learning process. Unlike a human infant,

the Neocognitron cannot make sense out of unedited confusion.

€5 The shift, scale and distortion tolerance of the Neocognitron is

accomplished gradually over a series of feedforward processing

* stages. The general architecture is illustrated in Figure 11,

which is taken from a paper by William Stoner and Terry M.

Schilke, "Pattern Recognition with a Neural Net, " SPIE Vol 698,

* Real Time Signal Processing IX pp 170-181 (1986).
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The "front-end" of the Neocognitron consists of a bank of

parallel correlators, which become dedicated during training to

specific feature elements. The outputs of these correlators are

nonlinear in the sense that only "above average" correlations

are past on to the next stage. So even in the first stage,

decisions are made which reduce the information flow in an

attempt to select the significant features of the input pattern.

After feature extraction, the spatial resolution is slightly

degraded in order to introduce tolerance to shift, scale and

distortion. This sequence of nonlinear feature extraction

*followed by degradation of spatial resolution is then repeated

in order to integrate (fuse) feature element information that is

spread out over the input image. For example, to recognize a

rose, the separate features for stem, thorn, leaves, petals,

-, ,. etc. must be combined. Since these feature elements occur at

different places in the input image, it is necessary to bring

them together by reducing the spatial resolution, so that higher

order correlators in subsequent stages can detect combinations

of feature elements such as (thorn + stem). After several

stages of feature detection and integration, complete patterns

are detected, with insensitivity to the location, scale, and

distortion of the pattern.

in the 1986 paper by Stoner and Schilke cited above, a model

Neocognitron was implemented on an IBM PC AT. The input image

* _was limited to a 14x14 array, because of the modest computing

power of the PC AT. A typical application of the Neocognitron
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might require a 128x128 input array, and processing times a

01000x faster than the processing time on the PC AT (hours).
A fast mainframe, or a dedicated parallel machine would help,

but how much? In order to predict the processing speed of a

Llarger Neocognitron model on a faster machine, it is necessary

to understand how the operation count of the Neocognitron grows

as the scale of the input array increases. This is analyzed in

Section 3.2.

In advance of this analysis, we are prompted by the sluggish

speed of the Neocognitron on the IBM PC AT to ask if there are

. _alternative candidates for SDI target discrimination missions

requiring tolerance to shift, scale, and distortion.

,i

N3.10 Pattern Recognition with Tolerance to Shift, Scale and

Aspect Angle

We now pose an important question: what is a good strategy for

*achieving pattern recognition independent of shift, scale, and

aspect angle? To address this question, we first characterize

the problem in mathematical form. The following discussion shows

* that the image changes resulting from positional shifts, scale

variations and aspect changes may be accomodated by adding 6

extra degrees of freedom to the target image. By searching over

0 a range of parameters representing the additional degrees of

freedom, the target image may be matched, even in the presence
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of a scale or aspect change.

~1

Consider first the trivial parametric representation of shifts.

:" Shifts may be parameterized in terms of the horizontal and

* vertical components of shift, xs and y s In an ideal situation,

suppose the coordinates overlaying the target are (x, y), with

origin at the centroid of the target. If the target is shifted

by (x5, ys) from the ideal position, the coordinates overlaying
s''

the target are given by

X, = x + x and y' = y + y

SSimilarly, scale changes by a scale magnification factor of M

, . are represented by

x' = Mx and y' = My, or

x' = Mx + andy' =My +y

in the presence of a shift. If the shift is removed, and the

coordinates are distorted logarithmically, a scale change is

converted into a shift

log(x'-x) = log(x) + log(M).

At This transformation does not eliminate the scale parameter M.

/ & The parametey space that must be searched to find a match with
.,

the nominal target image is just as large as before. The

equivalence between a shift by log(M) and a scale change by a

factor of M illustrates that the dimension of the search space

*-41-



is more significant than the form of the parameterization.

As the aspect angle of an object changes, most of the change in

le the image is a continuous function of the angle change.

However, when the changing aspect reveals or conceals facets of

the object, the image changes discontinuously in the first

derivative. In mathematical language, the image is a piecewise

continuous function of aspect angle. Many objects have a

limited number of facets, and their appearance may be captured

with a few well selected views. This is especially true of

objects which are aerodynamically streamlined. In such cases,

it is feasible to represent the object image with a reasonable

number, P, of discrete models, which jointly comprise a

piecewise continuous image model, valid for all aspect angles.

The jth of these models may be based upon a continuous

distortion (x, y) (x', y') of the image I corresponding to

the jth aspect of the object:

i I (x, y) Iji(x', y').

The coordinates x',y' are distorted from x,y as a function of

incremental changes in aspect angle about the jth aspect.

Assume (x', y') is expressed as a polynomial in (x, y):

•D i D i
D a. i qq y i-q D x q y i-q

a. , YE " bq
Si=O q=0 i=O q=0

The degree of the polynomials need be no higher than D=1, and

the coefficients ai q and bi, q will be functions of the three

• -42-
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parameters which define the deviation in object aspect angle

from the jth aspect: pitch, roll, and yaw.

In summary, shift tolerant pattern recognition requires searches

over a 2 parameter space. Scale variations may be accomodated

with one more parameter, and aspect angle changes with 3

additional parameters. The most general capability of shift,

scale, and aspect tolerant pattern recognition requires a search

over a 6 dimensional space.

3.11 Alternative Approaches to Invariant Pattern Recognition

By virtue of the shift-invariant connection patterns within

". .. slabs, and the gradual, module-by-module elimination of spatial

resolution, the Neocognitron is hard-wired for shift, distortion

I and scale tolerant pattern recognition. Is there a better way

-p to achieve these properties'? For example, why not use back-

propagation to train a neural net for these properties? Or, why

0 not use the shift-invariant property of the Fourier power

spectrum to obtain shift invariance?

* It is possible to demonstrate analytically the utter

impossibility of training for shift invariance, distortion and

scale using a learning algorithm like backpropagation. The

*difficulty arises from the astronomically large number ,f cases

on which the neural net must be trained in order to adequately
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sample possible instances of shifted patterns. Similar

arguments can be developed for scale and distortion invariance,

because they too require a search over a low dimensional

parameter space.

To keep the argument clear, we restrict the analysis to binary

input patterns. That is, pixels are either white or black. An

NxN input array then admits 2 NxN possible patterns. For a

'reasonable array size, say 128x128, this is an enormous number,

216384 Assume that the array has a doughnut topology so that

0 as a pattern is shifted that portion which falls off the edge

re-appears on the opposite side. Then it is clear that a given

2
pattern can be re-located to any one of the N array locations.

If all of these N shifted versions of a pattern are classified

as equivalent to one another, there are 2NXN/N
2 classes of

patterns, disregarding shifts. This is still an enormous

17384 14 16370
number; for N=128 we have 2 /2 2

To train for shift invariance, the training set should

* adequately sample the space of 216370 pattern classes. To put

*l*555"25this in perspective, there are less than 2 seconds in a year,

and so the naive idea of training a network for shift-invariance

* just isn't possible, because it would take too long. It appears

that training for distortion or scale invariance is fraught with

the same problem. We conclude that building in shift,

• distortion, and scale invariance is the proper approach.
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However, it is not clear that the Neocognitron architecture is

the best approach, because alternative approaches such as using

the Fourier power spectrum or invariant moments can provide some

of the desired invariances. Simulations are required to rank

the effectiveness of these alternative approaches under

realistic conditions; for example, the performance of power

spectrum and invariant moment approaches is degraded in the

presence of background clutter. These known deficiencies must

be quantified and compared to the Neocognitron performance. It

is also necessary to discover how the Neocognitron architecture

grows with the size of the input image, so that the speed of the

Neocognitron may be projected for large input images.

3.2 Computational Load of the Neocognitron

In the following discussion, we determine the scaling law and

computational count for one complete cycle of Neocognitron

operation. To do this, it is necessary to introduce some

0 specialized terminology: module, layer, slab, channel and unit.

Each processing stage is accomplished in a module. The modules

are numbered from 1=1 to 1=L where L is the last module. The

modules consist of two processing layers, the S layer which

performs correlations and the C layer which reduces the spatial

* resolution. Within each layer are multiple slabs. The distinct

slabs comprise separate channels through the architecture.
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Within a slab, all of the connections are shift-invariant, but

different slabs have distinct connection patterns. Within the

Ith module, slabs are numbered from 1 to KI, where K1 is the

number of distinct channels through the module. Within each

slab are individual processing units, which perform the

nonlinear summation of activity within their receptive field

>." (weighted connection pattern).

3.2.1 Scaling of the Neocognitron

The Neocognitron can be considered a multidimensional system.

The input array is N by N; there are L cascaded modules in the

P4  (feedforward) processing chain; and within each module there are

* multiple processing channels K1 which terminate in the KL output

classes. How do these parameters scale as the input array size

is varied? What is the limitation on the number of output

channels? Finally, how does the computation count scale with N

and KL?

We consider first the scaling of L with N. L is independent of

the number of output channels KL . As K increases the number of

* processing modules remains the same, but each module needs

additional channels to feed the increased number of output

channels.
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The increase of L with N is a consequence of the

shift-invariance property of the Neocognitron. As an input

pattern is shifted, the output channels must remain fully

connected to the pattern of input activity. At the same time,

any motion of an input pattern must be reduced in each module,

so that at the last module, there is complete insensitivity to

' shifts at the input. This property of the Neocognitron is

achieved gradually. Each module provides a little more shift

insensitivity by virtue of the reduction in slab size between

the S and C layers in the module. The receptive fields of

* adjacent units on a C slab are made to overlap on the preceding

S slab so that as activity moves around in the S slabs in accord

with shifts of the input pattern, the activity registered in the

C slab also moves around slightly, but the activity level is

nearly constant. This goal is satisfied in an integrated sense

-' if the receptive fields fall off linearly to zero with the

iw. distance from the center of the field, and the adjacent

receptive fields overlap 50%.

S, If the rxr receptive fields in the C slab did not have to

" ~overlap, then an nxn S slab could be covered by an (n/r) x (n/r)

. W C slab. The requirement for a 50% overlap doubles the number of

• sample points along each dimension of the C slab. Including

edge effects, a

* S,(2n/r+ 1) x (2n/r + 1)

C array is needed for an nxn S array. In the following, edge
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effects are ignored, so we take the ratio of the C slab array

- 2
size to the preceding S slab array size as (2/r)

S The point is that the array sizes decrease geometrically from

module to module. Since the last module has only one pixel in

each channel, we have that the number of modules, L must satisfy

N(2/r) < 1, or L 2 log 2 (N)/log2 (r/2).

.This criterion fixes L, number of modules, when N and r are

given. The receptive field size need not be constant from

module to module. However we assume a single value for r in

order to make the analysis clear. The receptive field sizes of

the S layer should be optimized to the size of the smallest

features in the preceding C layer. If they are bigger than

this, scale and distortion tolerance will be reduced. To

preserve information in passing from the S layer to the C layer

within each module, the receptive fields in the C layer should

not be significantly larger than the receptive fields in the

preceding C and S layer mapping. In the demorstration we made

on the IBM PC AT, the receptive field size was 5x5, (see the

above cited paper by Stoner and Schilke).
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3.2.2 Operation Count for One Neocognitron Cycle

To organize the operation count, we split the Neocognitron
computations into two classes. The primary class consists of

fmultiply-accumulate computations which generate the excitatory

and inhibitory inputs to individual S and C units. This class

," ",of operations may be taken into account by counting the

connections between layers. This is done in Sections 3.2.2.1

I. and 3.2.2.2. The excitatory and inhibitory inputs to an

~, ' , individual unit are combined by a nonlinear function to generate

the unit output. The operation count for nonlinear combining is

'? facilitated by counting the number of S and C units. This is

done in Sections 3.2.2.3 and 3.2.2.4. The results are analzyed

i in Section 3.2.2.5.--
3.2.2.1 Connections Between Modules

Consider the connections between an S slab and the NxN input

* array. The output of each unit in the S slab is computed by a

nonlinear summation over the r connections of the rxr receptive

field in the input array. The S slabs in the first module have

• the full NxN array size, and counting both excitatory and

inhibitory inputs to the S units, the total number of

connections in the S slab to the input array is 2N2 r2 . The

• first module has several S slabs, numbered from 1 to KI;

WN
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therefore there are 2K N 2 r2 connections from the input array to

the first S layer.

* .In the second module, the S slabs are connected to C slabs of

dimension N(2/r) x N(2/r). So connections from any given S slab

in the second module to any given C slab in the first module are

S2N 2(2/r)2 r2 in number. There are multiple channels in both the

first (KI) and second (K2 ) modules, so in all there are

2K1 K2 N2 (2/r)2 r2' 4

connections between the first and second modules. This pattern

continues from module to module, and in general the number of

connections from the lth to the (1 + 1)th module is

2K + N2 (2/r)21 r2

K1  2+/

2 If we define K0 = 1, this general expression also applies to the

connections from the input (1 = 0) to the first (1 = 1) module.

The total number of connections between modules is therefore

,O

22- 2 L-1 22N r K1 KI+ 1 (2/r)2 1

1=0 11+

For each connection, the multiply-accumulate operation requires

* one multiplication and one addition. The total number of

connections for constant K1 : K for 1 < 1 < L is given by

2. 2"22 L-1I2

2K N2 r2 + 2K2 N2 r2  (2/r)2 1

150
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The finite geometric sum can be evaluated exactly, but we shall

use the infinite sum because it converges rapidly and in any

event, we are interested in the result for large Neocognitron

models, so L will not be small. For large L, the sum will tend

Itowards

2
2"2 (2/r)

1" 2K N2 r2 + 2K N2 r additions, multiplications.
1-(2/r)

Although we have not made any Neocognitron experiments with

variable KI, we can give a rationale for increasing K 1 as 1

increases. With K1 held constant, the number of pathways from

the 1 = 1 module to the 1 = L module decreases by a factor of

N (2/r)2 from module to module. It may be possible to conserve

the information flow by increasing K1 +1 according to

1K+1 (2/r)2 K1 , for 1=1 to L-1.1+1

This is probably overly optimistic, because the information

being discarded by the reduction in spatial channels is not

equivalent on a one-to-one basis with pattern classification

0 information. However, we can use this relation for the growth

of K as an upper bound. The relation assumes the number of
12

.>i connections remains a constant K2 N2 r2 between modules 1 = 1 to

* 1 = L - 1. So a bound on the total number of additions and

multiplications required by the connections between modules is:

2KN2 r2 + 2(K2 N2 r2 )(L 1) additions, multiplications.
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The only difference between this upper bound and the previous

Aexpression is that:
2 2

(L - 1) has replaced (2/r) /(1 - (2/r)2).

3.2.2.2 Connections Within Modules

Within the ith module, there are
2 21 2

2K N2 (2/r) r
1

* connections between the S and C layers. The factor of 2 comes

from the two types of connections, excitatory and inhibitory.

There is a factor of K1 to include all of the channels, and a

A factor of N2(2/r)2 1 which is the number of units in each C slab.

Finally, the factor of r2 comes from the size of the C unit

receptive fields. Each connection requires a multiply; the

number of additions is precisely one less than the number of

multiplications. In the limit of large N, this difference is

p. ,negligible.

Summing over all modules from 1=1 to 1=L, there are a total of

2 L 21
2N r Kl(2/r) multiplications, and

;, L 21
2N2 r2  K (2/r) additions.
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If K 1 is a constant for 1 = 1 to L, we again take the limiting

expression for the geometric series sum approximate for large L

to obtain

2 2 (2/r)2

2N2 r2 K -(2/r) 2  multiplications and,i_1(2/r)2

2
2N2 r2 K 2r additions.

1-(2/r) 2

the case of K2(1-1) for 1 < 1 L, all of the terms

In tecsofK 1  K(r/2)2

in the sum have the same value, K(2/r) , so to the sum is:

2 2 2
0 2N r2KL(2/r) = 8N2KL additions and multiplications.

These operations occur with each activation of the feedforward

processing cascade.

3.2.2.3 Nonlinear Combining Within Modules

Each of the C units in the lth module combines its cumulative

excitatory and inhibitory inputs (E and I, respectively) in a

.function of the form

LIMITER[' : I

The LIMITER function is defined as

XI ' - for x > 0; LIMITER(x) 0 for x < 0.LIMITER~x) x + a
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The inhibitory input I is computed separately for each position

in the C slab, and these values of I are used by all of the C

slabs in a given layer, so once the computation of 1/(l+I) is

made for one slab, it may be stored for the other K -1 slabs in

r the ith C layer. There are N 2(2/r)2 1 units in a C slab in the

lth C layer, so this computation requires

N 2 N(2/r)2 1 additions and divides.

In the definition of the LIMITER function, there is an addition

which may be identified as +a, and in the argument of the

LIMITER function, there are additions which may be identified as

+E and -1. These 3 additions are performed for all C unitz in

the lth C layer. This involves K1 C slabs in all, requiring

3N2 K (2/r)2 1 additions.

The multiplication of (1+E) by the prestored 1/(1+I) value is

also performed over all C units in the lth layer, requiring

N 2 K1 (2/r)
2 1 multiplications.

0 ~The LIMITER function definition involves a division, x/(x+a)

which must be performed over all C units in the Ith layer,

requiring

SN 2 K (2/r) divisions.
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Adding terms for the addition operations, the nonlinear

combining operations for all modules contribute a total of

N2  (3K1 + 1)(2/r)21 additions,

N2  L Kl(2/r)2 1 multiplications, andilzi

"q L

N2  L (KI + 1)(2/r)
2 1  divisions.

1=1

9,

We are considering two types of Neocognitron architecture, those

2.0 with constant K1 = K for 1=1 to L, and those with increasing K

specified by KI+ 1  K(r/2) 2 1  The increasing K case provides an

upper bound to the nonlinear combining operation count. Summing

the above expressions for these two cases provides the following

results. For constant K,

2(2/r)2
(3K + 1)N additions,i1 (2/r)

2

N2 (2/r)2
K N _2 multiplications, and

(2/r)
2

* (K + 1) 2 divisions.1,-(2/r)
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In the increasing K case,

3KLN 2(2/r)2 + N2 additions,

KLN2(2/r)2  multiplications, and

KLN2  2 2(2/r)2

KLN2(2/r)2 + N2  2 divisions.
1-(2/r)2

3.2.2.4 Nonlinear Combining Between Modules
N

Each of the S units in the lth module combines its excitatory

and inhibitory inputs with a function of the form

R 1 +E 1

LI. + (c/(1+c))(b)(I)-J

The RAMP function is defined as
,',,

RAMP(x) x for x > 0; RAMP(x) 0 for x < 0.

The multiply-accumulate operations considered in Section 3.2.2.1

generate the E and I inputs to the RAMP function argument, but

* the operation count in Section 3.2.2.1 did not take into account

0 P.. the fact that the inputs to the multiply-accumulate operation

for I are the squared outputs of the preceding C units in the
2 

2(.

(l-1)th module. There are N 2(2/r) 2 ( 1- ) C units in each slab
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in the (l-1)th module, and so there are

2L 2(1-1)
N2  K1 1 (2/r) multiplications for the C unit output.

In the argument to the RAMP function, the quantity c is constant

within each layer, and b is constant within each slab. The

product (c/(l+c))(b) may therefore be computed once per slab,

and this factor and the initial factor of (c) involve 2

multiplications per S unit. Similarly, there are 3 additions, 1

division and 1 sign comparison (for the RAMP function) and

0 square root (the I inputs are RMS values) for each S unit.

" There are

.4 N~2 2(1-1)

N (2/r)

S units in each slab in the lth module, and so the nonlinear

combining operations in the S layer of the lth module require

3N 2  K1 (2/r) additions,

2. L 2(1-1)
2N2 K(2/r) multiplications,

' L
2 2(1-1) dvsos

S 2K 1 (2/r) divisions,

VO2 2 (1 - 1 )
% K (2/r) sign comparisons, and

* N2  Kl(2/r) 2(1-1) square roots.

-.. 7
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In addition we have the multiplications identified above from

the squaring operations in the C layers.

We are considering two types of Neocognitron architecture, those

with constant K = K for 1=1 to L, and those with increasing K

12
specified by K1 +1  K(r/2)21 . The increasing K case provides an

upper bound to the nonlinear combining operation count.

Evaluating the above expressions for these two cases provides

the following results. For constant K, the operation count for

nonlinear operations between modules requires

3N2K.1 additions,
l-(2/r)2

2N 2K 1 + 2 + 2 (2/r)2  multiplications,
1-(2/r)2  -(2/r)

N2K 2 divisions,

Ia 1-(2/r)2

N2 K 1 sign comparisons, and1(2/r) 2

N2 K 1 square root evaluations... '1-(2/r) 2 "

For the case with increasing K between modules, the operation

0 -count for nonlinear combining between modules requires

1P 3N2KL additions,

2N2 KL + N2 + N2K(L-1)(2/r)2 multiplications,

02 NK , divisions,
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N2K L sign comparisons, and

N KL square root evaluations.

3.2.2.5 Conclusions on Neocognitron Computational Load

In both the standard Neocognitron architecture, in which the

number of channels K is held fixed from module to module, and

the hypothetical architecture in which the number of channels

increases as K1 = K(r/2) 2 (1-1 ) for 1 < 1 < L, the dominant

*computation is the multiply-accumulate operations which support

the connections between modules. For constant K, the operation

count summed over 1 for these connections is:

N2r2N r2K + 8N K2  = 2N2r 2K + 8N 2K 2  additions,
(1-(2/r) multiplications.

For typical values of r 5 and K = 100, these terms can be

combined to give the approximate growth in computation with the

parameters N and K as either

* 8.5N2 K2 or 400N2K additions, multiplications.

K 2
For the increasing K case, there are 2N 2K22 L additions and

multiplications, with L growing as log 2 (N)/log2 (r/2). (See

Section 3.2.1.) Using the same values of r = 5 and K 1 100 as

before, this result may be written for comparison with the
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, constant K case as approximately

50NK log2 (N) or 500NKlog(N) additions, multiplications.

V This comparison shows that the hypothetical increasing K

* architecture has a computational load which is greater than that

for the standard Neocognitron architecture by a factor of

% -. roughly 61og 2 (N) to 121og 2(N).

Since the operation counts for both architectures grows in a

A reasonable rate with the number of pixels in the input window,

2 ,the Neocognitron is attractive for practical values of N,

say 128 or 256. Scaling up the N = 14 model which we

demonstrated on an IBM PC AT to N = 128 will increase the

computations by roughly 1OOx. A response time on the order of a

second for the N = 128 Neocognitron will require 100,000x the

processing speed of the PC AT. This is feasible with parallel

processing.

0
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4.0 AC-coupled Retina with Cooperative Receptors

Today's supercomputers are in many respects greatly inferior to

" the brain. Language learning without instruction, fluid,

|. content-addressable memory and the natural ability of humans to

*perform face recognition are examples of the superiority of the

S', brain. The capabilities of the brain are all the more

remarkable when its size, weight and power requirements are

compared to those of computers.

* These attributes of the brain compel us to try to understand its

form and function. A natural place to start is the most

accesible part of the brain, the retina.

-, The human visual system is adaptive in many diverse ways. For

example, we perceive colors fairly well even though the spectrum

of the illuminant changes sharply when going indoors or

outdoors. While reading, we adapt to different fonts and type

V sizes. We "see" fairly well under both moonlit and sunlit

1W conditions, and we frequently must drive cars with sunlight or

headlights shining in our eyes.

• In the "computer-vision" style of information processing, the

front-end of the system, a camera and analog-to-digital

convertor, is selected to capture the scene intensity and

* spectrum faithfully for subsequent processing. Not so in

,. the biological style of information processing. Even at the
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photoreceptor level, our visual system is responding to the

relative image brightness, rather than the absolute brightness.

In solid-state focal plane array cameras, "fixed pattern noise"

caused by inhomogeneities in the detector material or

fabrication must be corrected by special "field flattening"

hardware or algorithms. Not so in the human visual system.

Yes, the retina has inhomogeneities-- like the blood vessels

which obstruct the retina, but we don't see fixed pattern noise

A because the retina only responds to changes. Eye tremor

'4 provides the necessary modulation to refresh the scene on the

retina, while the AC-coupling of the retina filters out fixed

pattern noise.

The retina is part of the brain, and it is likely that the style

of information processing known to occur in the retina is used

elsewhere in the brain for diverse functions. For example, the

Inatural ability of the retina to eliminate fixed pattern noise

can be recognized more generally as a form of delta modulation

, to achieve bandwith compression and maximize information flow.

The retina is therefore significant both as a new, biological

paradigm for imaging sensors, and for the opportunity it

o provides to learn about the brain. These two reasons provided
A

the motivation to study a retinal model developed by Michael H.

Brill for his Ph. D. dissertation at MIT under Professor J. Y.

Lettvin. We improved the computational approach used in the

model (called IRIS) so that it became possible for the first
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time to scale up the retina to interesting array sizes (up to

2156x256). We did this first in FORTRAN on an IBM PC AT, and

later on a SUN Workstaition, and a BBN Butterfly machine. The BBN

Butterfly is a parallel machine. Using 16 processors on the

Butterfly, the model ran 25.14x faster than on the SUN. This

work is reported separately in an appendix, PARALLEL

I IMPLEMENTATION OF IRIS. Although this is a significant speedup,

the Butterfly is a coarse-grained parallel machine, and the IRIS

retinal model involves local processes, suggesting that it is

most naturally implemented as a special purpose analog or

digital chip, as Carver Mead has done with his retinal model.

("A Silicon Model of Early Visual Processing," by Carver Mead

-t. and M. A. Mahowald, Neural Networks, Vol. 1, pp91-9 7 , 1988.)

r The IRIS retinal model has the capability to adjust

spatiotemporal resolution to the prevailing light level, thereby

combating photon noise. This property is known as adaptive

resolution. It also has an automatic gain control (AGC)

capability to adapt the set-point of dynamic range to the local

average light intensity. This property is known as adaptive

contrast resolution.

* IRIS receptors have three-state activation kinetics with

short-lived intermediate photopigment states. The model is

"AC-coupled" in the sense that only temporally varying

• light/dark gradients maintain a sensory excitation. The

response of the receptor cells is coded as voltage, and the

* -63-
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receptors are resistively coupled. This arrangement provides an

automatic mixture of time/space integration: a) for high photon

flux, each receptor cell responds rapidly, and the neighboring

cells are decoupled, providing the highest spatiotemporal

*resolution; b) for low photon flux, cell temporal response is

slow, and neighboring cells are coupled to give broader

,." spatiotemporal integration, enhancing light sensitivity at the

*expense of resolution in space and time.

In the model retina, transduction of light into receptor

response is the result of ionic photoconductors embedded in the

receptor cell membrane. Depending on its instantaneous state,

each photopigment molecule in the membrane can open a conducting

channel to either of two monovalent cationic species. When a

photon is incident, the receptor quickly opens a channel to the

first of these species, then slowly closes this channel and

- Bopens a channel to the other species, and finally returns to a

nonconductive state (by the addition of metabolic energy). The

... ionic species are driven by membrane voltages in opposite

directions, so the receptor acts in a "push-pull" way. As in

human vision, the voltage response is zero to a sustained

"S (steady-state) light; the response versus log-intensity function

shifts to the time-averaged intensity, thereby giving the

adaptive contrast sensitivity desired for a visual system with

limited dynamic range. Also, the receptor's response is

I governed by photopigment kinetics whose rate increases with

light level. Hence, the model retina has ada-tive temaporal

-64-
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resolution-- as desired to defeat photon noise. The

photopigment kinetics are described by a set of coupled

first-order differential equations provided in Figure 12.

The adaptive time behavior of the model receptor has

another helpful property borne out in our computer

p. ,
I 
"simulations. A pulse of light causes a response that decays

slowly to steady state; however, a pulse of darkness produces

only a short-duration change of response. This is fortunate for

an eye that has to blink. See Figure 13 for simulations of the

* model receptor response to changes in light level.

The adaptive temporal resolution of the model retina has a

simple counterpart in the spatial domain. The model retina is

tiled with a lattice of photoreceptors, wired together with a

passively conducting grid of constant conductivity. The visual

a' signal for each receptor --a transmembrane voltage-- is now

modified by lateral interaction. See Figure 14. When the

retinal illumination is (and has been) very low, most of the

current passes between receptors when light hits one of them,

and the receptors are functionally coupled. However, when the

eye is light-adapted, the receptors tend to keep to themselves;

very little current flows between them. This behavior shows up

d j as an "iris" of lateral influence, contracting in the presence

of light and dilating when light is removed. It provides a

simple mechanism whereby visual acuity can be traded off against

light sensitivity as the prevailing light gets dimmer.
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Results of an IRIS simulation provided in Figure 15 demonstrate

this intensity-dependent spatial resolution. The test pattern

is split into two portions along the diagonal. Above the

diagonal, a pattern of black and white squares recedes into the

upper left corner. Below the diagonal, there is a cosinusoidal

pattern with linear FM modulation in the radial direction (a

Fresnel pattern). The limiting resolution is determined by the

discrete photoreceptor sampling at high light levels. This is

demonstrated in Figure 15a (where the peak light level is 0.12

of that level which would bleach ten percent of the photopigment

into a state requiring a metabolic input before returning to the

" ground state). At one tenth this light level, (see Figure 15b)

a small decrease in resolution is evident because of spatial

averaging among nearby photoreceptors. A further ten-fold

Ndecrease in the light level results in the obvious reduction in

spatial resolution shown in Figure 15c. Such intensity

dependent resolution is also found in human vision.
'.

N- .In common with human vision, the model retina displays Weber's

law (proprotionality of increment threshold to a pre-etxisting
background intensity over a much greater intensity range than

the instantaneous dynamic range of the receptor.
*.1.

NIRIS was designed to give repeatable response in dim light to

visual scenes that are nominally the same except for photon

S noise. The repeatability was brought about at the expense of

spatiotemporal resolution. Repeatability of percepts from the
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same reflecting ob.jects is a necessary but not sufficient

condition for lightness constancy and color constancy --the

illuminant-invariant assessment of reflectance information.

Further detail on the IRIS model may be found in the paper

"Retinal model with adaptive contrast sensitivity and

resolution," by Michael H. Brill, Doreen W. Bergeron, and

William W. Stoner in the December 1, 1987 issue of Applied

Optics, a special issue devoted to neural networks edited by

Gail Carpenter and Stephen Grossberg.

I "g
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This document describes the implementation of the fortran
program, COLORP , on the Butterfly multiprocessor. The COLORP program

-- is a computer simulated trichromatic retina ( called IRIS ) as
described in Retinal Model with Adaptive Contrast Sensitivity and
Resolution by Michael H. Br ll, Doreen W. Bergeron, and William W.
Stoner. The purpose of this experiment was to show the reduction in
resolution of the output image as corresponding input image light
levels were reduced, and to increase the runtime speed of the program
by implementing on a parallel processor.

An unoptimized version of the code was tested on the SUNP. |uniprocessor which did produce output images that demonstrate the
reduction in the spatiotemporal resolution as the light levels were
reduced. Table 1 summarizes the results of the 7 test runs performed
on the SUN. Column 1 is the run number. Columns 2 and 3 list the
initial phi and intensity values used. The initial phi value is used

.1 to calculate the initial values of the three-phase receptors and is
one-half that of the maximum intensity value. Then listed is the chip

- size, min and max input values, and min and max of the resulting
output arrays. Runs 2, 3, and 4, which showed the greatest difference
in the resolution of the output arrays, were rerun on a 256 x 256
image and photographed. The results are shown in figure 1.

Figure 2 is a diagram of the calling sequence of the uniprocessor
* version of the program. Each routine is briefly described below:

COLORP - Driver which controls flow of the program and produces
jitter effect.

PICLl - Provides an n x n picture as input to the retinal array.
The pattern lying above the diagonal is a series of squares decreasing
in size. The pattern lying below the diagonal is a cosinusoidal

- fresnel zone plate.

KNUTHI - Random number generator used to determine jitter effect.

BLEACH - Finds change in photo-chemical species of three-phase
. . receptors as functions of quantum cath phi.

SYNADI - Performs syncytial lateral interaction by using the
alternating direction implicit (ADI) solution of partial differential
equations.( from Numerical Recipies)

4 -TRIDAG - Solves tridiagonal system of equations.(from Numerical
Recipies)

IMGOUT - Writes an image out to a RAMfile.

RAMGLUE - Fortran-C Interface to BBN ramfile system ( Mike Ingram
0 SAIC Tucson)."
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RAMFILE SYSTEM - File handler written to maintain ramfiles on the
Butterfly system. (BBN) The RAMfile system was simulated on the SUN.

The SUN version of the program was modified in the following ways
in order to optimize the code and minimize its size for implementation
on the Butterfly.

- Only one call to synadi was made rather than twelve.

U' - Portion of code which produces jitter indices was replaced by a
do loop.

- Bleach routine was replaced by a worker routine as were two0sections of synadi which set up input vectors to the tridag routine
and call that routine.

-All arrays referenced in the worker routines were scattered
throughout butterfly memory in order to reduce contention.

- All frequently referenced variables appearing in worker
routines were shared among processors ( local processor private copies
were made .)

- Output data word size was reduced to integer*2 because values

fall between 0 and 255.

- Jitter indices are passed to the bleach routine, eliminating
the need for an additional array.

- Third dimension of A array in bleach routine was replaces with
Ia temporary variable.

- All arrays were reduced to two dimensional in order to be able
to allocate them.

Parallel Implementation :

, Three portions of the code were identified as targets for
parallel implementation. The first is the bleach routine, which finds
the changes in the photochemical species of three-phase receptors by
computing coupled differential equations for each pixel. A generator
calls the bleach worker routine once for each element of the image

-. array thus a GENONA call is used.

Two worker routines were extracted from the synadi routine.

1.) Bodyl which computes input vectors for the tridag routine and
* L" computes a solution for PSI, one line at a time.
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2.) Body2 which also computes vectors for the tridag routine and 1
computes a solution for V and PSI one line at a time.

A generator calls these routines once for each row of the image
thus a GENONI call is used.

In order to measure the timing of the coe3 on various node
configuration, it had to be reorganized . The new calling schete is
shown in figure 3 and the new subroutines briefly described below.

TIMECOLORP - Driver for the timed version of the program.

INITPROBONCE - Contains all memory allocation and matrix
scattering calls. Makes the call to picll to produce the input array.

INITPERRUN - Initializes arrays to pre-bleached state.

EXECUTE - Portion which does the actual computation. It performs
all generator calls. This is the only portion of the program which is
timed.

PRESULTS - prints results of time tests.

The program was run on every possible number of nodes ( 1 - 26 ).
The timing routine reports the time it took the code to execute, the
number of processors it used, the effective number of processors, and
the efficiency . The effective number of processors is equal to the
time it takes one processor divided by the time it takes n processors
( n isthe number of processors being used.) The efficiency equals the
effective number of processors divided by n processors.

A summary of the testing results is shown in table 2. Tabulated
is the number of processors, time in seconds that is took the
algorithm to run, effective number of processors, and the efficiency.
Figure 4 is a plot of the time it took the program to run versus the
number of processors it ran on. Note that the time it took to run on
one processor was 4137.98 seconds, and that was decreased by a factor
of 7 when the number of processors was increased to 2. The
significant decrease can partially be attributed to the fact that even

:- though only one processor is being used to run the program, the data
is scattered across all available nodes ( 26 of them.) The one
processor must make many switch calls to access the data which is too
numerous to fit on one node thus producing an I/ bottleneck. There
may also be some unidentified overhead computation involved in the
initial run of the routine, perhaps some memory management
initialization which is not locatable at this high level of testing.
Figure 5 is a rescaled version of figure 4 with the first data point
eliminated. The fluctuation in runtime is more apparent in this plot
as is the tendency of the runtime to decrease as the number of
processors approaches 16. The runtime then increases as more

<- processors are added above 16. The index generator calls to the
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worker routines Bodyl and Body2 were made 256 times and the array
, generator calls were made on a 256 x 256 array, so it is not

surprising that the statistics show the program running faster and
most efficiently on a configuration of 16 nodes.

Figure 6 is a plot of the computed effective processors and a
linear plot. It is interesting to note that the 2 curves intersect at

V the data point for 17 processors. The effective processor curve
reaches a maximum value of 17 at the 16 processor point. The data
also shows that 11 processors would be an efficient number to work
with for this algorithm.

Figure 7 is a plot of processor efficiency vs number of
processors. The efficiency steadily decreases after the efficiency
peak at the two processor point.

Timing was also performed on a comparable version of the SUN
code. There were slight differences between the data structures used

kin the two versions, but nothing which would amount to any major
processing time differences. Processing of a 256 x 256 image on the
SUN took 1:37:02 or 5822 seconds. When compared with the single
processor run on the Butterfly, the SUN took (5822/4138) - 1.4 times

' longer to run. In the two processor case the butterfly was
(5822.0/581.3) - 10.0 times faster than the SUN. The greatest speedup
factor occured in the 16 processor case which ran (5822.0/231.58) W
25.14 times faster. There still remains the discrepancy between the
numbers of the first two timing runs performed on the butterfly. More
rigorous timing procedures may be able to identify a source of
overhead computation involved in the first run of the timing series on
the Butterfly.
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Table 1

SUMMARY OF 7 SUN RUNS

RUN PHII INTENSITY SIZE INPUT-RANGE V-RANGE E-RANGE

1 1.5e-04 1.0e-03 32 1.0le-03 0.712274 0.728196
1.00e-05 -0.753071 -0.881850

output very bright

2 5.Oe-04 1.Oe-03 32 1.0le-03 0.337748 0.337009
1.OOe-05 -0.960784 -0.960881 I

4-" slightly blurred image

3 5.0e-05 1.Oe-04 32 1.Ole-04 0.314754 0.337013
1.00e-06 -0.654061 -0.960881 0

blurred image

4 5.0e-06 1.0e-05 32 1.0le-05 0.160709 0.337014
1.OOe-07 -0.148879 -0.960880

very blurred image -'

5 5.0e-07 1.0e-06 32 1.00e-06 no output
1,00e-07

maxits exceeded in synadi ( maxits - 1000 )

6 5.0e-03 1.0e-02 32 1.0le-02 0.332361 0.336964
1.00e-04 -0.959805 -0.960886 ,"

fairly sharp image

7 5.0e-02 1.Oe-01 32 1.Ole-01 0.335810 0.336513
1.00e-03 -0.959701 -0.960939

very similar to output of run 6 0

b -X
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processors time effective efficiency
(secs pr

1 4137.98 1.00 1.00
2 581.3 7.12 3.56
3 428.88 9.65 3.22
4 354.8 11.66 2.92
5 308.99 13.39 2.68
6 279.48 14.81 2.47
7 261.59 15.82 2.26

7 8 258.2 16.03 2.00
9 243.02 17.03 1.89
10 244.67 16.91 1.69
11 233.12 17.75 1.61

: 12 241.43 17.14 1.43
13 242.67 17.05 1.31

"- 14 237.73 17.41 1.24
15 243.3 17.01 1.13
16 231.58 17.87 1.12
17 244.37 16.93 1.00
18 255.03 16.23 0.90
19 253.58 16.32 0.86
20 244.61 16.92 0.85
21 271.61 15.24 0.73
22 257.11 16.09 0.73
23 273.68 15.12 0.66
24 270.42 15.30 0.64
25 261.34 15.83 0.63
26 290.43 14.25 0.55

r-4 Table 2 Time Test Results
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